

CLASS: XIIth

**DATE:** 

**SOLUTION** 

**SUBJECT: CHEMISTRY** 

**DPP NO.: 5** 

# Topic:-organic chemistry - some basic principles and techniques

1 **(b)** 

Formic acid was obtained from ant (fromica in greek). This is trivial name for HCOOH.

2 (a)

The structure of 2, 3-dimethyl hexane is

So, the number of tertiary carbon atoms=2

The number of secondary carbon atoms=2

The number of primary carbon atoms=4

3 **(a)** 

Follow IUPAC rules.

6 **(c)** 

CH<sub>3</sub><sup>+</sup> has planar structure.

7 **(d)** 

These are characteristics of carbanion.

8 **(a)** 

Follow Saytzeff rule for elimination. 3-halopentane will give only pentene-2.

9 **(b)** 

| Atom | Atomic   | Percentage         | $\frac{b}{a} = x$  | Ratio |  |
|------|----------|--------------------|--------------------|-------|--|
|      | Mass (a) | $(\boldsymbol{b})$ |                    |       |  |
| С    | 12       | 10.06              | $\frac{10.06}{12}$ | 1     |  |
| Н    | 1        | 0.84               | $\frac{0.84}{1}$   | 1     |  |
| Cl   | 35.5     | 89.10              | 89.10<br>35.5      | 3     |  |

Empirical formula = CHCl<sub>3</sub>

Empirical formula mass =  $12 + 1 + 106.5 = 119.5 \approx 120$ 

Molecular mass =  $2 \times V$ . D =  $2 \times 60 = 120$ 

$$n = \frac{\text{molar mass}}{\text{empirical formula mass}}$$
$$= \frac{120}{120} = 1$$

Molecular formula =  $(CHCl_3)_1 = CHCl_3$ 

## 10 **(d)**

During nucleophilic substitution weaker nucleophile is replaced by stronger nucleophile. The compound having C-Cl bond which can be most easily broken will be most reactive towards nuclophilic substitution reaction.

In vinyl chloride  $CH_2 = CH - Cl$  and chlorobenzene  $C_6H_5Cl$  the C-Cl bond has partial double bond character due to resonance.

: They do not give nucleophilic substitution reaction easily

$$CH_2 \xrightarrow{\frown} CH \xrightarrow{\downarrow} CH_2 \xrightarrow{\downarrow} CH_2 - CH \xrightarrow{\oplus} CH_2$$

Benzyl chloride, give nucleophilic substitution easily because they carbocation formed is stabilised due to resonance.

$$\begin{array}{c} \text{CH}_2 = \text{CH} - \text{CH}_2\text{CI} \xrightarrow{\text{-CI}^-} \text{CH}_2 \xrightarrow{\text{CH}} \xrightarrow{\text{CH}} \overset{\bigoplus}{\text{CH}_2} \text{CH}_2 \\ \text{allyl chloride} & \xrightarrow{\text{CH}_2} - \text{CH} = \text{CH}_2 \\ \text{carbocation} & \xrightarrow{\text{OH}^-} \text{HOCH}_2 - \text{CH} = \text{CH}_2 \\ \text{allyl alcohol} & & \text{allyl alcohol} \end{array}$$

#### 11 (a)

Enantiomers are non-superimposable mirror images, e.g, lactic acid

Diastereomers are non-superimposable and are not the mirror images of each other. Moreover, *meso* form has plane of symmetry.

#### 12 **(b)**

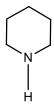
Nucleophilic strength increases down a column of the Periodic Table (in solvents that can have hydrogen bonds, such as water, alcohols, thio alcohols).

Nucleophilic strength  $RO^- < RS^-$ 

Base strength  $RO^{\ominus} > RS^{-}$ 

Thus,  $RO^{\Theta}$  is more nucleophilic but less basic than  $RO^{-}$ 

# 15 **(a**)


We know that there are seven isomers in  $C_4H_{10}O$ . Out of these seven isomers, four are of alcohol and three are of ether.

# 16 **(a**)

Tertiary halide always favours  $S_N 1$  mechanism (as they give comparatively stabler carbocation) white primary halide favours  $S_N 2$  mechanism.

### 17 **(d)**

Electron donors are bases. Since, electron density is highest at



(Piperidine), hence, it is most basic.

## 18 **(d)**

Follow IUPAC rules.

# 20 **(c)**

To be optically active, compound or structure should posses a chiral or asymmetric carbon atom. 1-chloropentane is not chiral.

| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |  |
|------------|----|----|----|----|----|----|----|----|----|----|--|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |  |
| Α.         | В  | A  | A  | C  | C  | С  | D  | A  | В  | D  |  |
|            |    |    |    |    |    |    |    |    |    |    |  |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| A.         | A  | В  | С  | A  | A  | A  | D  | D  | A  | С  |  |
|            |    |    |    |    |    |    |    |    |    |    |  |