# CBSE 

## Additional Practice Questions-Marking Scheme Subject: Mathematics (041) <br> Class: XII 2023-24

Time Allowed: 3 Hours
Maximum Marks: 80

## SECTION A

Multiple Choice Questions of 1 mark each.

| Q <br> No. | Answer/Solution | Marks |
| :--- | :--- | :--- |
| 1 | (b) $\left.\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ | 1 |
| 2 | (c) $\sqrt{7}$ | 1 |
| 3 | (b) $\frac{3}{2}$ sq units | 1 |
| 4 | (d) $\frac{-1}{2 \sqrt{x(1-x)}}$ | 1 |
| 5 | (b) $f(x)$ is continuous but not differentiable. | 1 |
| 6 | (a) $(-\infty, 0)$ | 1 |
| 7 | (a) $\frac{(5 e)^{x}}{\log 5 e}+C$ | 1 |
| 8 | (a) $6 \log (2)-2$ | 1 |
| 9 | (c) | 1 |


|  | $x^{2}\left(\frac{d y}{d x}\right)^{4}+\sin y-\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=0$ |  |
| :--- | :--- | :--- |
| 10 | (a) only (i) | 1 |
| 11 | (d) only (ii) and (iii) | 1 |
| 12 | (a) $\lambda=\frac{3}{5}, \sigma=0$ | 1 |
| 13 | (b) $(\sqrt{ } 2,2, \sqrt{ } 2)$ | 1 |
| 14 | (d) $p=8, q=4, r=(-3)$ | 1 |
| 15 | (a) exactly one | 1 |
| 16 | (d) exists as the inequality $3 x+2 y<6$ does not have any point in common <br> with the feasible region. | 1 |
| 17 | (c) both maximum and minimum | 1 |
| 18 | (c)$P(M)$ <br> $P(M)+P(N)$ | 1 |
| 19 | (d) (A) is false but (R) is true. | 1 |
| 20 | (d) Both (A) and (R) are false. | 1 |

## SECTION B

Very short answer questions of 2 marks each.

| Q |  |  |
| :--- | :--- | :--- |
| No. | Answer/Solution | Marks |

21
21 Since the domain of inverse of cosine function is $[-1,1]$, finds the domain of the given
1.5 function as follows:
$-1 \leq x-1 \leq 1$
So, $0 \leq x \leq 2$
And,
$-1 \leq 1-x \leq 1$
-> $1 \geq x-1 \geq-1$
So, $2 \geq x \geq 0$

Concludes the domain of $\cos ^{-1}(|x-1|)$ as $[0,2]$.

Draws the graphs of $\mathrm{y}=2 \sin ^{-1}(x)$ as shown below.


22
Considers one such matrix as $\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]$ and frames the following relationship: $\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]+\left[\begin{array}{ll}x & z \\ y & w\end{array}\right]=\left[\begin{array}{cc}6 & -1 \\ -1 & 4\end{array}\right]$

Obtains $x=3$ and $w=2$ using the relationship obtained in the previous step as follows:
$2 x=6 \Rightarrow x=3$
$2 w=4 \Rightarrow w=2$
Writes any value of $y$ and $z$ that satisfies the third relationship obtained in the first step. For example, $y=0$ and $z=-1$.

Writes one such matrix as $\left[\begin{array}{cc}3 & 0 \\ -1 & 2\end{array}\right]$.
(Award full marks for any other matrix that satisfies the relationship.)
23 i) Finds $\frac{d x}{d t}$ as $\left(-\operatorname{cosec}^{2} t\right)$.
Finds $\frac{d y}{d t}$ as $2 \operatorname{cosec} t(-\operatorname{cosec} t \cot t)=-2 \operatorname{cosec}^{2} t \cot t$.
Finds $\frac{d y}{d x}$ as:
$\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=2 \cot t$
ii) Finds $\frac{d^{2} y}{d x^{2}}$ as:
$\frac{d}{d x}(2 \cot t)$
$=\frac{d}{d x}(2 x)$
$=2$
(Award full marks if any alternate method is used.)

\begin{tabular}{|c|c|c|}
\hline 24 \& \begin{tabular}{l}
Writes that the rate at which the number of active users is increasing or decreasing at a given time is given by \(\frac{d}{d t} N(t)\). \\
Finds the derivative of \(N(t)\) as:
\[
\frac{d}{d t} N(t)=1000(0.1) e^{0.1 t}
\] \\
Finds the rate of change of active users at 10 minutes past 5 pm as:
\[
\frac{d}{d t} N(10)=1000(0.1) e^{(0.1)(10)}=100 e
\] \\
Concludes that the number of active users are increasing at a rate of \(100 e\) people per minute at \(5: 10 \mathrm{pm}\) on that day. \\
OR \\
Finds the derivative of the given function as:
\[
P^{\prime}(t)=2000 \times \frac{(-1)}{\left(1+e^{-0.5 t}\right)^{2}} \times e^{-0.5 t} \times\left(-\frac{1}{2}\right)=\frac{1000\left(e^{-0.5 t}\right)}{\left(1+e^{-0.5 t}\right)^{2}}
\] \\
Writes that the above quantity is greater than 0 for any value of \(t\). \\
Concludes that the rabbit population is increasing.
\end{tabular} \& 0.5
1.0

0.5

1.0
0.5
0.5 <br>

\hline 25 \& | Substitutes $(\mathrm{k}-x)$ by $u$ to get $d x=-d u$ and rewrites the given integral as: $\mathrm{I}=\int(\mathrm{k}-u)(u)^{23}(-d u)$ |
| :--- |
| Integrates the expression in above step as: $I=\frac{-k u^{24}}{24}+\frac{u^{25}}{25}+C$ |
| where, C is the constant of integration. |
| Substitutes $u=(\mathrm{k}-x)$ back in the above expression and writes: $I=\frac{(-k)(k-x)^{24}}{24}+\frac{(k-x)^{25}}{25}+C$ |
| where, C is the constant of integration. | \& 0.5

1.0

0.5 <br>
\hline
\end{tabular}

## SECTION C

Short answer questions of 3 marks each.

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \mathbf{Q} \\
\text { No. }
\end{array}
\] \& Answer/Solution \& Marks \\
\hline 26 \& \begin{tabular}{l}
Rewrites the numerator of the given integral as:
\[
\begin{aligned}
\& 3 x+5=\mathrm{A} \frac{d}{d x}\left(x^{2}+4 x+7\right)+\mathrm{B} \\
\& \Rightarrow 3 x+5=\mathrm{A}(2 x+4)+\mathrm{B}
\end{aligned}
\] \\
Finds the values of A and B by comparing the coefficients of like terms as:
\[
\begin{aligned}
\& 2 \mathrm{~A}=3 \Rightarrow \mathrm{~A}=\frac{3}{2} \\
\& 4 \mathrm{~A}+\mathrm{B}=5 \Rightarrow \mathrm{~B}=-1
\end{aligned}
\] \\
Substitutes the values of A and B in the given integral and integrates the same as:
\[
\begin{aligned}
\mathrm{I} \& =\int \frac{\frac{3}{2}(2 x+4)-1}{x^{2}+4 x+7} d x \\
\Rightarrow \mathrm{I} \& =\frac{3}{2} \int \frac{2 x+4}{x^{2}+4 x+7} d x-\int \frac{1}{(x+2)^{2}+(\sqrt{3})^{2}} d x \\
\Rightarrow \mathrm{I} \& =\frac{3}{2} \log \left|x^{2}+4 x+7\right|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+2}{\sqrt{3}}\right)+C
\end{aligned}
\] \\
where, C is the constant of integration.
\end{tabular} \& 0.5
1.0

1.5 <br>

\hline 27 \& | Takes $u=(25+\cos \theta)$. |
| :--- |
| Finds $d u$ as: $d u=-\sin \theta d \theta$ |
| Finds the change in limit when $\theta=0$ and $\theta=\frac{\pi}{2}$ to $u=26$ and $u=25$ respectively. |
| Rewrites the given integral using the above substitution and integrates the same as: | \& \[

$$
\begin{gathered}
0.5 \\
0.5
\end{gathered}
$$
\] <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta d \theta}{(25+\cos \theta)(26+\cos \theta)} \\
= \& \int_{26}^{25} \frac{-d u}{u(1+u)} \\
= \& \int_{25}^{26} \frac{d u}{u(1+u)} \\
= \& \int_{25}^{26} \frac{(1+u)-u}{u(1+u)} d u \\
= \& \int_{25}^{26} \frac{1}{u} d u-\int_{25}^{26} \frac{1}{1+u} d u \\
= \& {[\log u-\log (1+u)]_{25}^{26} }
\end{aligned}
\] \\
Applies the limit to find the value of the given definite integral as \(\log \frac{26 \times 26}{25 \times 27}\). \\
(Award full marks if the problem is solved correctly by taking \(u=26+\cos \theta\).) \\
OR \\
States the property that is going to be used as: \\
If \(f(2 a-x)=f(x)\), \\
then \(\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x\) \\
Takes \(2 a=\pi\) and \(f(x)=h(\sin x)\). \\
Finds \(f(2 a-x)\) as:
\[
f(2 a-x)=f(\pi-x)=h(\sin (\pi-x))=h(\sin x)=f(x)
\] \\
Thus confirms that the property listed in the above step can be applied to the given integral. \\
Hence concludes that:
\[
\int_{0}^{\pi} h(\sin x) d x=2 \int_{0}^{\frac{\pi}{2}} h(\sin x) d x
\]
\end{tabular} \& 1.5

0.5

1.0

2.0 <br>
\hline 28 \& (i) Models the situation and rearranges terms to form a linear differential equation as follows:

$$
\begin{aligned}
& 0.05 \frac{\mathrm{~d} v}{\mathrm{~d} t}=-0.4 v-0.5 \\
& \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} t}+8 v=-10
\end{aligned}
$$ \& 0.5 <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(ii) Considering the obtained equation as linear of the form \(\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}\) with \(\mathrm{P}=8\) and hence takes the integrating factor as:
\[
e^{\int 8 \mathrm{~d} t}=e^{8 t}
\] \\
Multiplies the differential equation by the integrating factor as follows:
\[
\begin{aligned}
\& e^{8 t} \frac{\mathrm{~d} v}{\mathrm{~d} t}+8 v e^{8 t}=-10 e^{8 t} \\
\& \Rightarrow \frac{d}{d t}\left(v e^{8 t}\right)=-10 e^{8 t}
\end{aligned}
\] \\
Integrates both sides to obtain the general solution of the differential equation as follows:
\[
\begin{aligned}
\& \int \frac{\mathrm{d}}{\mathrm{~d} t}\left(v e^{8 t}\right)=-10 \int e^{8 t} \\
\& \Rightarrow v e^{8 t}=\frac{-10}{8} e^{8 t}+\mathrm{C} \\
\& \Rightarrow v=-1.25+\mathrm{Ce}^{-8 t}
\end{aligned}
\] \\
where \(C\) is the constant of integration. \\
Uses the initial condition \(v(0)=10 \mathrm{~m} / \mathrm{s}\) to find the value of C as follows:
\[
\begin{aligned}
\& 10=-1.25+C \\
\& \Rightarrow C=11.25
\end{aligned}
\] \\
Hence, writes the expression for the velocity of the ball as a function of time as follows:
\[
v=-1.25+11.25 e^{-8 t}
\]
\end{tabular} \& 0.5

0.5

1.0

0.5 <br>

\hline 29 \& | Frames the differential equation using the given conditions as follows: $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3} \times \frac{y}{x} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{y}{3 x} \end{aligned}$ |
| :--- |
| Rearranges the terms to separate the variables as follows: $\frac{d y}{y}=\frac{d x}{3 x}$ |
| Integrates both sides to obtain the general solution of the curve. The working may look as follows: | \& 1.0

0.5 <br>
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline 30 \& \begin{tabular}{l}
Finds the profit on selling the products as: \\
Profit for each unit of Product A sold \(=100-60=\) Rs 40 \\
Profit for each unit of Product B sold \(=150-90=\) Rs 60 . \\
Takes \(x\) and \(y\) to be the numbers of Product A and Product B to be produced in a day respectively and frames the objective function as: \\
Maximise \(Z=40 x+60 y\) \\
Writes the constraints of the given linear programming problem as:
\[
\begin{aligned}
\& 60 x+90 y \leq 8000 \\
\& x+y \leq 100 \\
\& y \leq 2 x \text { or }-2 x+y \leq 0 \\
\& x, y \geq 0
\end{aligned}
\] \\
OR \\
i) Uses the graph of the feasible region and lists the constraints of the given maximisation problem as:
\[
\begin{aligned}
\& 3 x+2 y \leq 12 \\
\& x+2 y \leq 8 \\
\& x, y \geq 0
\end{aligned}
\] \\
ii) Finds the value of the objective function at corner points as:
\end{tabular} \& 0.5
1.0

1.0

1.5
1.5

1.5 <br>

\hline \& | Corner point $z=5 x+3 y$ <br> $(0,0)$ 0 <br> $(0,4)$ 12 <br> $(2,3)$ 19 <br> $(4,0)$ 20 |
| :--- |
| Concludes that the objective function attains maximum value at $(4,0)$ and hence $(4,0)$ is the optimal solution. | \& 1.0

0.5 <br>
\hline 31 \& Applies Bayes' theorem and writes: \& <br>
\hline
\end{tabular}

$\mathrm{P}($ Urgent|Not Important $)=$
$P($ Urgent $) \times P($ Not Important $\mid$ Urgent $)$
$\overline{P(\text { Urgent }) \times P(\text { Not Important } \mid \text { Urgent })+P(\text { Not Urgent }) \times P(\text { Not Important } \mid \text { Not Urgent })}$

Substitutes respective probabilities in the expression obtained above to find the required probability as follows:

P(Urgent|Not Important)
$=\frac{\left(\frac{40}{100} \times \frac{1}{2}\right)}{\left(\frac{40}{100} \times \frac{1}{2}\right)+\left(\frac{60}{100} \times \frac{30}{100}\right)}$

Simplifies the above expression to get the probability that a randomly selected task that is not important is urgent as $\frac{10}{19}$ or $52.63 \%$.

## SECTION D

Long answer questions of 5 marks each.

| Q |  |  |
| :--- | :--- | :--- |
| No. | Answer/Solution | Marks |

32
i) Writes that for no $x \in \mathrm{U},(x, x) \in \mathrm{R}$ as the difference in time between $x \& x$ is 0 hours.

Concludes that R is not reflexive.

Writes that, whenever the difference in time between $x$ and $y$ is 6 hours, the difference in time between $y$ and $x$ is also 6 hours. That is, $(x, y) \in \mathrm{R}=>$ $(y, x) \in \mathrm{R}$.

Concludes that R is symmetric.

Writes that, if the difference in time between $x$ and $y$ is 6 hours, and the difference in time between $y$ and $z$ is also 6 hours, then the difference in time between $x$ and $z$ could be either 0 hours or 12 hours. That is, $(x, y) \in \mathrm{R} \&$ $(y, z) \in \mathrm{R}$ but $(\mathrm{x}, \mathrm{z}) \notin \mathrm{R}$.

Concludes that R is not transitive.
ii) From the above steps, concludes that $R$ is not an equivalence relation.

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
ii) Equates \(f(x)\) to \(y\) and solves the same to express \(x\) in terms of \(y\) as:
\[
\begin{aligned}
\& \frac{x}{x^{2}-1}=y \\
\Rightarrow \& x=y x^{2}-y \\
\Rightarrow \& y x^{2}-x-y=0 \\
\Rightarrow \& x=\frac{1 \pm \sqrt{1+4 y^{2}}}{2 y}
\end{aligned}
\] \\
Since \(1+4 y^{2}>0\), real root exists and also they are not \(\pm 1\)
\[
\Rightarrow x=\frac{1 \pm \sqrt{1+4 y^{2}}}{2 y} \in R-\{-1,+1\}
\] \\
Writes that for any \(y \in \mathrm{R}\) (codomain), there exists \(x \in \mathrm{R}-\{-1,1\}\) (domain) such that \(f(x)=y\). Hence concludes that \(f\) is onto.
\end{tabular} \& 1.5

0.5 <br>

\hline 33 \& | Writes the system of equations as: $\begin{aligned} & 100 a+10 b+c=16 \\ & 400 a+20 b+c=22 \\ & 900 a+30 b+c=25 \end{aligned}$ |
| :--- |
| Writes the above system of equations in the form $\mathrm{AX}=\mathrm{B}$ as: $\left(\begin{array}{lll} 100 & 10 & 1 \\ 400 & 20 & 1 \\ 900 & 30 & 1 \end{array}\right)\left(\begin{array}{l} a \\ b \\ c \end{array}\right)=\left(\begin{array}{l} 16 \\ 22 \\ 25 \end{array}\right)$ |
| Finds $\|\mathrm{A}\|$ as $1(18000-12000)-1(3000-9000)+1(2000-4000)=-2000$ and writes that $\mathrm{A}^{-1}$ exists as $\|\mathrm{A}\| \neq 0$. |
| Finds $\mathrm{A}^{-1}$ as: $A^{-1}=\left(\begin{array}{ccc} \frac{1}{200} & \frac{-1}{100} & \frac{1}{200} \\ \frac{-1}{4} & \frac{2}{5} & \frac{-3}{20} \\ 3 & -3 & 1 \end{array}\right)$ |
| (Award 1 mark if only all the cofactors are found correctly.) | \& 0.5

0.5

0.5

1.5 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Finds the values of \(a, b\) and \(c\) as \(-\frac{3}{200}, \frac{21}{20}\) and 7 respectively by solving \(\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}\) as:
\[
X=A^{-1} B=\left(\begin{array}{ccc}
\frac{1}{200} \& \frac{-1}{100} \& \frac{1}{200} \\
\frac{-1}{4} \& \frac{2}{5} \& \frac{-3}{20} \\
3 \& -3 \& 1
\end{array}\right) \times\left(\begin{array}{c}
16 \\
22 \\
25
\end{array}\right)=\left(\begin{array}{c}
\frac{-3}{200} \\
\frac{21}{20} \\
7
\end{array}\right)
\] \\
Finds the equation of the path traversed by the ball as:
\[
y=-\frac{3}{200} x^{2}+\frac{21}{20} x+7
\] \\
Writes that when \(x=70\) feet, \(y=7\) feet. So, the ball went by 7 feet above the floor that means 3 feet below the basketball hoop. So, the ball did not go through the hoop.
\end{tabular} \& 1.0
0.5

0.5 <br>

\hline 34 \& | Finds the equation of the ellipse as: $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$ |
| :--- |
| Expresses $y$ in terms of x as: $y= \pm \frac{4}{6} \sqrt{36-x^{2}}$ |
| Integrates the above equation with respect to x from limit 0 to 6 , that gives the area of one quarter of the ellipse. The working may look as follows: $\int_{0}^{6} \frac{4}{6} \sqrt{36-x^{2}} d x$ |
| Applies the formula of integration and simplifies as: $\frac{4}{6}\left[\frac{x}{2} \sqrt{6^{2}-x^{2}}+\frac{6^{2}}{2} \sin ^{-1}\left(\frac{x}{6}\right)\right]_{0}^{6}$ |
| Applies the limit and solves further as: $\frac{4}{6}\left[\frac{6}{2} \times 0+\frac{6^{2}}{2} \sin ^{-1}(1)-0\right]$ |
| Simplifies the above expression to get the area of one-quarter of the base as $6 \pi$ sq feet. |
| Finds the area of the whole ellipse as $4 \times 6 \pi=24 \pi$ sq feet. |
| Finds the volume of water as $24 \pi \times 10=240 \pi$ cubic feet. | \& 0.5

0.5

0.5

1.0

0.5

1.0
0.5
0.5 <br>
\hline
\end{tabular}

35
i) Takes $\vec{a}=-5 \hat{i}+7 \hat{j}-4 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$

Writes the vector equation of the given straight line as:
$\vec{r}=(-5 \hat{i}+7 \hat{j}-4 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}+\hat{k})$
Writes the cartesian equation of the given straight line as:
$\frac{x+5}{3}=\frac{y-7}{-2}=\frac{z+4}{1}$
ii) Simplifies the vector form obtained in step 2 as:
$\vec{r}=(-5+3 \lambda) \hat{i}+(7-2 \lambda) \hat{j}+(\lambda-4) \hat{k}$
Writes that at the point where the line crosses $x y$-plane, its $z$-coordinate is zero and equates the $z$-coordinate of the above equation to zero as:
$\lambda-4=0$
$\Rightarrow \lambda=4$
Substitutes $\lambda=4$ in the vector form to get the required point as $(7,-1,0)$.

## OR

Rewrites the equation of $L_{1}$ in cartesian form as:
$\frac{x}{3}=\frac{y}{2}=\frac{z}{-6}$
Rewrites the equation of $L_{2}$ in cartesian form as:
$\frac{x}{2}=\frac{y}{-12}=\frac{z}{-3}$
i) Identifies the direction cosines of both the lines as $(3,2,-6)$ and (2, -12, -3 ).

Finds the cosine of the angle between the two lines as:
$\cos \theta=\left|\frac{6-24+18}{\sqrt{49} \sqrt{157}}\right|=0$
(Award 0.5 marks if only the formula of the cosine of the angle between the two lines is written correctly.)
Concludes that the angle between the two lines is $90^{\circ}$.

|  | ii) Rewrites the equations of $L_{1}$ and $L_{2}$ in vector form as: <br> $\vec{r}_{1}=(0 \hat{i}+0 \hat{j}+0 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}-6 \hat{k})$, where $\lambda \in \mathrm{R}$ <br> $\vec{r}_{2}=(0 \hat{i}+0 \hat{j}+0 \hat{k})+\lambda(2 \hat{i}-12 \hat{j}-3 \hat{k})$, where $\lambda \in \mathrm{R}$ <br> Writes that both the lines pass through the origin hence intersect at the origin. <br> (Award full marks if the inference about both lines passing through the origin <br> is drawn without writing the vector forms.) | 1.0 |
| :--- | :--- | :--- |
| Writes that since both the lines intersect at the origin, the shortest distance <br> between the two lines is 0 units. | 0.5 |  |

## SECTION E

## Case-based questions of 4 marks each.

| $\begin{aligned} & \hline \mathrm{Q} \\ & \text { No. } \end{aligned}$ | Answer/Solution | Marks |
| :---: | :---: | :---: |
| $\begin{aligned} & 36 \\ & \text { i) } \end{aligned}$ | Writes the vectors for points P and Q as follows: $\begin{aligned} & \overrightarrow{\mathrm{OP}}=-2 \hat{i}+\hat{j}+3 \hat{k} \\ & \overrightarrow{\mathrm{OQ}}=3 \hat{i}+4 \hat{j}-\hat{k} \end{aligned}$ <br> Finds the vector representing the flight path of Airplane 1 as: $\begin{aligned} & \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}} \\ & =(3 \hat{i}+4 \hat{j}-\hat{k})-(-2 \hat{i}+\hat{j}+3 \hat{k}) \\ & =5 \hat{i}+3 \hat{j}-4 \hat{k} \end{aligned}$ | $0.5$ $0.5$ |
| $\begin{aligned} & 36 \\ & \text { ii) } \end{aligned}$ | Uses vector subtraction to find the vector representing the flight path from R to Q as: $\begin{aligned} & \overrightarrow{\mathrm{RQ}}=\overrightarrow{\mathrm{PQ}}-\overrightarrow{\mathrm{PR}} \\ & =(5 \hat{i}+3 \hat{j}-4 \hat{k})-(5 \hat{i}+\hat{j}-2 \hat{k}) \\ & =2 \hat{j}-2 \hat{k} \end{aligned}$ | 1.0 |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
36
\] \\
iii)
\end{tabular} \& \begin{tabular}{l}
Finds the cosine of the angle between the vectors representing the flight paths of Airplane 1 and Airplane 2 as:
\[
\begin{aligned}
\& \cos \theta=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{|\overrightarrow{P Q}| \cdot|\overrightarrow{P R}|} \\
\& =\frac{(5 \hat{i}+3 \hat{j}-4 \hat{k}) \cdot(5 \hat{i}+\hat{j}-2 \hat{k})}{\sqrt{50} \cdot \sqrt{30}} \\
\& =\frac{18}{5 \sqrt{15}}
\end{aligned}
\] \\
Finds the angle between the flight paths as:
\[
\theta=\cos ^{-1}\left(\frac{18}{5 \sqrt{15}}\right)
\] \\
OR \\
Considers a point \(S\) which divides \(P Q\) internally in the ratio 1:2. \\
Finds the position vector of point \(S\) as:
\[
\begin{aligned}
\& \overrightarrow{\mathrm{OS}}=\frac{1(\overrightarrow{\mathrm{OQ}})+2(\overrightarrow{\mathrm{OP}})}{1+2} \\
\& =\frac{1(3 \hat{i}+4 \hat{j}-\hat{k})+2(-2 \hat{i}+\hat{j}+3 \hat{k})}{3} \\
\& =-\frac{1}{3} \hat{i}+2 \hat{j}+\frac{5}{3} \hat{k}
\end{aligned}
\] \\
(Award 0.5 marks if only the formula is written correctly.)
\end{tabular} \& 1.5

0.5

0.5

1.5 <br>

\hline $$
\begin{array}{|l|}
\hline 37 \\
\text { i) }
\end{array}
$$ \& Finds the required probability as:

$$
\begin{aligned}
& P(5 \text { from spinner } A) \cap P(8 \text { from spinner } B) \\
& =\frac{1}{4} \times \frac{1}{8} \\
& =\frac{1}{32}
\end{aligned}
$$ \& 1.0 <br>

\hline $$
\begin{aligned}
& \hline 37 \\
& \text { ii) }
\end{aligned}
$$ \& Uses the conditional probability and finds the required probability as follows:

$$
\begin{aligned}
& P(\text { Even } \mid \text { Multiple of } 3) \\
& =P(\text { Even } \cap \text { Multiple of } 3) \div P(\text { Multiple of } 3) \\
& =\frac{\frac{1}{8}}{\frac{2}{8}} \\
& =\frac{1}{2}
\end{aligned}
$$ \& 1.0 <br>

\hline
\end{tabular}

| $37$ <br> iii) | Finds the probability of getting 2 from spinner A and getting 1 from spinner B as: $P_{1}=\frac{1}{2} \times \frac{1}{8}=\frac{1}{16}$ <br> Finds the probability of getting 5 from spinner A and getting either $1,2,3$ or 4 from spinner B as: $\begin{aligned} & P_{2}=\frac{1}{4} \times\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right] \\ & =\frac{1}{4} \times \frac{4}{8} \\ & =\frac{1}{8} \end{aligned}$ <br> Writes that $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ are mutually exclusive and hence, finds the probability that she wins a photo frame as: $\begin{aligned} & P_{1}+P_{2}=\frac{1}{16}+\frac{1}{4} \\ & =\frac{5}{16} \end{aligned}$ <br> OR <br> Uses the theorem of total probability and writes: <br> $\mathrm{P}($ getting 2$)=[\mathrm{P}($ Spinner A$) \times \mathrm{P}($ Getting $2 \mid$ Spinner A$)]+$ $[\mathrm{P}(\text { Spinner } \mathrm{B}) \times \mathrm{P}(\text { Getting } 2 \mid \text { Spinner } \mathrm{B})]$ <br> Finds the required probability by substituting the required probability as: $\begin{aligned} & {\left[\frac{65}{100} \times \frac{1}{2}\right]+\left[\frac{35}{100} \times \frac{1}{8}\right]} \\ & =\frac{59}{160} \end{aligned}$ | 0.5 <br>  <br> 1.0 <br>  <br>  <br>  <br> 0.5 <br>  <br>  <br> 0.5 <br> 1.5 |
| :---: | :---: | :---: |
| 38 i) | Identifies that the rod being heated is $\mathrm{R}_{1}$ and finds the rate of change of temperature at any distance from one end of $\mathrm{R}_{1}$ as: $\frac{d T}{d x}=\frac{d}{d x}(16-x) x=\frac{d}{d x}\left(16 x-x^{2}\right)=16-2 x$ <br> Finds the mid-point of the rod as $x=8 \mathrm{~m}$. | 1.0 0.5 |

\begin{tabular}{|c|c|c|}
\hline \& Finds the rate of change of temperature at the mid point of \(\mathrm{R}_{1}\) as:
\[
\frac{d T}{d x}(\text { at } x=8)=16-2(8)=0
\] \& 0.5 \\
\hline \[
\begin{aligned}
\& 38 \\
\& \text { ii) }
\end{aligned}
\] \& \begin{tabular}{l}
Identifies that the rod being cooled is \(\mathrm{R}_{2}\) and finds the rate of change of temperature at any distance \(x \mathrm{~m}\) as:
\[
\frac{d T}{d x}=\frac{d}{d x}(x-12) x=\frac{d}{d x}\left(x^{2}-12 x\right)=2 x-12
\] \\
Equates \(\frac{d T}{d x}\) to 0 to get the critical point as \(x=6\). \\
Finds the second derivative of T as:
\[
\frac{d^{2} T}{d x^{2}}=2
\] \\
And concludes that at \(x=6 \mathrm{~m}\), the rod has minimum temperature as \(\frac{d^{2} T}{d x^{2}}(\) at \(x=6)=2>0\). \\
Finds the minimum temperature attained by the \(\operatorname{rod} \mathrm{R}_{2}\) as \(\mathrm{T}(6)=(6-12) 6=-36^{\circ} \mathrm{C}\).
\end{tabular} \& 1.0

0.5
0.5 <br>
\hline
\end{tabular}

