CONCEPT ACADEMY

CHEMISTRY

Topic : Chemical kinetics

[SOLUTIONS]

ล

(2). Let the rate of reaction depends on x^{th} power (1) of [A]. Then $r_1 = k[A]^x$ and $r_2 = k[2A]^x$ $\therefore \quad \frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{[\mathbf{A}]^{x}}{[2\mathbf{A}]^{x}} = \frac{1}{4} = \left(\frac{1}{2}\right)^2 \quad (\because \mathbf{r}_2 = 4\mathbf{r}_1)$ x = 2. *.*.. As the reaction rate does not depend upon the concentration of B. Hence, the correct rate law will be rate = $k [A]^2 [B]^o$ or rate = $k [A]^2$ (3). The unit of K for zero order reaction (2)= mole litre⁻¹ sec⁻¹ (2). $k = \frac{2.303}{t} \log \frac{a}{a - x}$ (3) $\frac{0.693}{T} = \frac{2.303}{t} \log \frac{100}{100 - 30}$ \therefore T = 58.2 min. (2). Order of reaction = $\frac{3}{2} + \frac{3}{2} = \frac{3+3}{2} = \frac{6}{2} = 3$ (4) (2). $CH_3COOCH_3 + H_2O$ (5) $\xrightarrow{H^+} CH_3COOH + CH_3OH$ It is a pseudo-unimolecular reaction. (6) (3). The relation between half – life period and initial concentration (3) for a nth order reaction is given by $t_{1/2} \propto \frac{1}{C^{n-1}}$ for first order reaction (n=1).

$$t_{1/2} \propto \frac{1}{C^{1-1}}$$
 or $t_{1/2} \propto C^0$.

(7) (2). The increase in collision frequency brings in an increase in effective collisions and thus rate of reaction increases.

(8) (1).
$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

 $\log \frac{K_2}{K_1} = \frac{9.0 \times 10^3}{2.303 \times 2} \left[\frac{308 - 298}{308 \times 298} \right]$
 $\frac{K_2}{K_1} = 1.63; K_2 = 1.63 K_1$
 $\frac{1.63K_1 - K_1}{K_1} \times 100 = 63.0\%$

(9) (1). For zero order,
$$t_{1/2} = \frac{\pi}{2k}$$

In the given curve, slope = 1 = 1/2k
i.e. $2k = 1$ \therefore $k = 1/2$
(10) (3). $\frac{(t_{1/2})_{I}}{(t_{1/2})_{II}} = \left(\frac{a_{II}}{a_{I}}\right)^{n-1}$
 $\frac{120}{240} = \left(\frac{4 \times 10^{-2}}{8 \times 10^{-2}}\right)^{n-1}$
 $n - 1 = 1 \Rightarrow n = 2$
(11) (1). $-\frac{1}{3} \frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{+d[C]}{dt} = \frac{+d(D)}{dt}$
(12) (1). $p_0 = 500$ atm
 $K = \frac{2.303}{t} \log_{10} \frac{p_0}{p_t}$
 $3.38 \times 10^{-5} = \frac{2.303}{10 \times 60} \log \frac{500}{p_t}$
or $0.00880 = \log \frac{500}{p_t} \Rightarrow \frac{500}{1.02} = 490$ atm

(13) (3). For following reaction,

$$2NO_{(g)} + O_2(g) \rightarrow 2NO_2(g)$$

When the volume of vessel change into $\frac{1}{3}$ then concentration of reactant become three times.

The rate of reaction for first order reaction ∞ concentration. So rate of reaction will increases three times.

(14) (2).
$$t_{1/2} = \frac{0.693}{k}, \frac{0.693}{1.1 \times 10^{-9}} = 6.3 \times 10^8 \text{ sec.}$$

- (15)(4). The rate of this photochemical reaction is independent of the concentration, therefore, it is zero order reaction.
- (16)(1). Rate consatnt For first order \Rightarrow time⁻¹ For second order \Rightarrow mole⁻¹ litre time⁻¹ (17) (4). A \rightarrow product $\Rightarrow -\frac{d[A]}{dt} = k_1[A]^\circ$

$$\Rightarrow \text{zero order}$$

$$B \rightarrow \text{product} \Rightarrow -\frac{d[B]}{dt} = k_2 [A]$$

$$\Rightarrow 1^{\text{st}} \text{ order}$$

For zero order \Rightarrow molL⁻¹ time⁻¹=Msec⁻¹ For 1st order \Rightarrow time⁻¹ or sec⁻¹

- (18) (3). $H_2 \xrightarrow{adsorb}$ Tungsten surface \Rightarrow zero order
- (19) (1). Rate of reaction = k $[NO]^2 [O_2]$

If volume become half concentration of both will become twice.

Then, Rate = $k_f \{2[NO]\}^2 \{[2[O_2]\}\}$ = $8K_f [NO]^2 \cdot [O_2]$

(20) (4). r = k [A]. [B] ⇒ IInd order The rate equation shows the reaction to be second order. So, the correct statement is (4) because rate constant of a reaction remain constant irrespectively of concentration A or B.

(21) (2).
$$E_f > E_b$$
 or $E_b < E_f$

- (22) (1). $k = Ae^{-Ea/RT}$ Ea = The energy below which colliding molecules will not react i.e. activation energy. (23) (3) r = k [NOPr] [NO]
- (23) (3). $r = k [NOBr_2] [NO]$ $[NOBr_2] = k_{eq} [NO] [Br_2]$ So, $r = k.k_{eq} [NO] [Br_2] [NO]$ $= k' [NO]^2 [Br_2]$ So, the order with respect to NO = 2
- - $\therefore \quad \text{From equation (1)} \\ t = 0.25/1 = 0.25\text{hr}$
- (25) (4). Rate equation is to be derived wrt slow step ∴ from mechanism (1) Rate = k [Cl₂] [H₂S]

- (26) (2). If one of the reacting species is in excess, a bimolecular reaction becomes first order reaction.
- (27) (2). The rate of photochemical process varies with the intensity of absorption since greater the intensity of absorbed light more photons will fall at a point, and further each photon causes one molecule to undergo reaction.

(28) (3).
$$K = \frac{2.303}{t} \log \frac{[A]_0}{[A]_t} = \frac{2.303}{2 \times 10^4} \log \frac{800}{50}$$

= 1.386 × 10⁻⁴ s⁻¹

(30) (1). For Ist order reaction
For zero order reaction,
$$k_1 = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{40} \sec^{-1}$$

 $k_0 = \frac{C_0}{2t_{1/2}} = \frac{1.386}{2 \times 20} \Rightarrow \frac{k_1}{k_0} = \frac{0.693}{1.386} = 0.5$
(31) (4) From Arrhenius equation

(31) (4). From Arrheniu $K = Ae^{-Ea/RT}$ Arrnenius equation $\ln K = \ln A - \frac{Ea}{RT}$ $2.303 \log K = 2.303 \log A - \frac{Ea}{RT}$ $\log K = \frac{-Ea}{2303R} \times \frac{1}{T} + \log A$ (1) $\log K = -(2000)\frac{1}{T} + 6$ (2) On comparing eq. (1) and (2), $\frac{12a}{2.303R} = -2000$ $Ea = 2.303 \times 8.314 \times 2000 = 38.29 \text{ kJ}.$ and $\log A = 6$; $A = 10^{6}$ (1). $K = \frac{C_0 - C}{t} = \frac{1 - 0.75}{0.05} = \frac{0.25}{0.05} = 5$ (32) $\mathrm{K} = \frac{0.75 - 0.40}{0.07} = \frac{0.35}{0.07} = 5$ So, reaction must be of zero order. (33) (2). $\frac{r_2}{r_1} = \left(\frac{[M]_2}{[M]_1}\right)$ $8 = (2)^a$; a = 3So, order of reaction is 3.

(34) (1). Average rate
$$= -\frac{1}{2} \frac{\Delta[R]}{\Delta t}$$

 $= -\frac{1}{2} \times \frac{0.4 - 0.5}{10} = \frac{1}{2} \times \frac{0.1}{10}$
 $= 5 \times 10^{-3} \text{ M min}^{-1}$

- (35) (2). Apart from energy considerations, the colliding molecules should have proper orientation for effective collisions.
- (36) (2). First order reaction given a straight line plot of log (a x) and time.
- (37) (2). A catalyst does not alter Gibbs energy, ΔG of a reaction.
- **(38) (2).** $2N_2O_4 \square 4NO_2$

Rate =
$$-\frac{1}{2} \frac{d[N_2O_4]}{dt} = +\frac{1}{4} \frac{d[NO_2]}{dt}$$

= $\frac{1}{2}k = \frac{1}{4}k'$ or $k' = 2k$

- (39) (3). Catalyst alters the activation energy of both forward and backward reactions equally hence heat of reaction remains unchanged.
- (40) (4). The unit of rate of reaction is mol $L^{-1} s^{-1}$. It does not change with order.
- (41) (2). If x atm be the decrease in pressure of A at time t and one mole each of B and C is being formed, the increase in pressure of B and C will also be x atm each.

$$\begin{array}{cccc} A_{(g)} & \rightarrow & B_{(g)} & + & C_{(g)} \\ At \ t = 0 & p_i \ atm & 0 \ atm & 0 \ atm \end{array}$$

At time t (p_i-x) atm x atm x atm

where, p_i is the initial pressure at time t = 0 $p_i = (p_i - x) + x + x = p_i + x$

$$p_{i} = (p_{i} - x) + x + x = p_{i} + x$$

$$x = (p_{t} - p_{i})$$

$$where, p_{A} = p_{i} - x = p_{i} - (p_{t} - p_{i}) = 2p_{i} - p_{t}$$

$$k = \left(\frac{2.303}{t}\right) \left(\log \frac{p_{i}}{p_{A}}\right) = \frac{2.303}{t} \log \frac{p_{i}}{(2p_{i} - p_{t})}$$

(42) (4). Given, [A]
$$0 = 0.01 \text{ M}$$

Rate = $2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}\text{S}^{-1}$.
For a first order reaction, Rate = k [A]
 $k = \frac{2.0 \times 10^{-5}}{[0.01]} = 2 \times 10^{-3}$
 $t_{1/2} = \frac{0.693}{2 \times 10^{-3}} = 347 \text{ sec}$
(43) (2). Rate_I = k [A]^x [B]^y (1)
 $\frac{\text{Rate_I}}{4} = \text{k } [A]^x [2B]^y$ (2)
or Rate_I = 4k [A]^x [2B]^y
From (1) and (2), we get
 $\frac{\text{k } [A]^x [B]^y}{4} = \text{k } [A]^x [2B]^y$
 $\frac{[B]^y}{4} = [2B]^y$
 $\frac{1}{4} = (\frac{2B}{B})^y \Rightarrow \frac{1}{4} = 2^y \text{ or } 2^{-2} = 2^y$
or $y = -2$

(44) (4). In the given options $-\frac{d[C]}{3 dt}$ will not represent the reaction rate. It should not have -ve sign as it is product. Since $\frac{1}{3} \frac{dC}{dt}$ show the rate of formation of product C which will be positive.

(45) (1). If we write rate of reaction in terms of concentration of NH₃ and H₂, then

Rate of reaction
$$= \frac{1}{2} \frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

So, $\frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$